Project Title

Our lab is in charge of designing and teaching several courses in the ANU Computer Science cirriculumn.

  • Subtitle

    This course provides a broad but thorough intermediate level study of the methods and practices of statistical machine learning, emphasising the mathematical, statistical, and computational aspects. Students will learn how to implement efficient machine learning algorithms on a computer based on principled mathematical foundations. Topics covered will include Bayesian inference and maximum likelihood modelling; regression, classification, density estimation, clustering, principal and independent component analysis; parametric, semi-parametric, and non-parametric models; basis functions, neural networks, kernel methods, and graphical models; deterministic and stochastic optimisation; overfitting, regularisation, and validation.