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Motivating Questions

e How to measure uncertainty of unknown triples given knowledge

graph?

e How to incorporate a graph structure of knowledge graph into

low-rank factorisation to improve unknown triple prediction?

e How to maximise total number of triples while keeping high pre-
diction performance in incremental knowledge population?

Contribution
e Propose a probabilistic formulation of bilinear tensor factorisa-
tion that allows us to predict the uncertainty of unknown triples.

e Incorporate a path structure of knowledge graph into factorisation
by modelling a composition of relations.

e Develop an incremental population method that searches the
factorised space, trading of exploration and exploitation using
Thompson sampling.

1 Probabilistic Relational Model

o A triple, e.g. {Obama, president of, US}, is a basic unit of a knowl-
edge graph

e Collection of knowledge triples can be represented as a 3d tensor

e Statistical relational models factorise the tensor into low dimen-
sional entities and relations

Probabilistic bilinear factorisation model
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We reformulate popular RESCAL model in a probabilistic way by
placing isotropic normal prior over entity vectors and relation matri-
ces. For the observation, we design two different models:
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1. Normal output (PNORMAL): 2. Logistic output (PLOGIT):
zirj ~ N(e] Rye;, 07) i ~ ole; Rye;)

2 Compositional Relational Model
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Figure 2: Multiple consecutive triples form a compositional triple.

We augment the original tensor with compositional additional triples
to explicitly incorporate path structure into factorisation.

We design two observation schemes for the compositional model:
1. Multiplicative (pcompr-mur): 2. Additive (PCOMP ADD):
Ticj ~ /\/'((sz-TRClRC2 . chej) Ticj ~ N (e . Cn(Rcl .+ ch)ej)
where c is a compositional relation with composition of relations
{c1,c9,...,cn}

3 Knowledge Completion

Goal: predict the unobserved part of knowledge graph through the
reconstruction of tensor

Method: reconstruct tensor via posterior samples inferred by Gibbs
sampling

Dataset # rel # entities # triples sparsity
Kinship, 26 104 10,790  0.038
UMLS = 49 135 6,752 0.008
Nation 56 14 2,024 0.184

Table 1: Description of datasets.
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Visualisation of learned entities
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Figure 4: Embedding learned entities of the UMLS dataset into a
two-dimensional space through the spectral clustering. The entities
of the same type are located closer to each other with the multiplica-
tive compositional model (PCOMP-MUL) than the non-compositional
model.

4 Incremental Knowledge Population

Goal: maximise the number of positive triples based on the interac-
tion with human experts given a limited amount of budget

Method: adopt Thompson sampling (TS) from K-armed bandits
e Particle Thompson sampling for population:

1. Sample unobserved triples z;;; from posterior distribution
2. Query the maximum triple & Obtain label from human experts

3. Update posterior using sequential Monte Carlo
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Figure 5: The cumulative gain (up-
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the Thompson sampling with base-
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e TS has been used to maximise cumulative gains in bandits.

e Maximising cumulative gain entails good predictive models.
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