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Motivating Questions

•How to measure uncertainty of unknown triples given knowledge
graph?
•How to incorporate a graph structure of knowledge graph into

low-rank factorisation to improve unknown triple prediction?
•How to maximise total number of triples while keeping high pre-

diction performance in incremental knowledge population?

Contribution

•Propose a probabilistic formulation of bilinear tensor factorisa-
tion that allows us to predict the uncertainty of unknown triples.
• Incorporate a path structure of knowledge graph into factorisation

by modelling a composition of relations.
•Develop an incremental population method that searches the

factorised space, trading of exploration and exploitation using
Thompson sampling.

1 Probabilistic Relational Model

•A triple, e.g. {Obama, president of, US}, is a basic unit of a knowl-
edge graph

•Collection of knowledge triples can be represented as a 3d tensor

•Statistical relational models factorise the tensor into low dimen-
sional entities and relations

Probabilistic bilinear factorisation model
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Figure 1: Bilinear
factorisation model,
RESCAL, where entities
are embedded into
D-dimensional latent
space.

ei, ej ∈ RD, Rk ∈ RD×D

We reformulate popular RESCAL model in a probabilistic way by
placing isotropic normal prior over entity vectors and relation matri-
ces. For the observation, we design two different models:

1. Normal output (PNORMAL): 2. Logistic output (PLOGIT):
xikj ∼ N (e>i Rkej, σ

2
x) xikj ∼ σ(e>i Rkej)

2 Compositional Relational Model
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Figure 2: Multiple consecutive triples form a compositional triple.
We augment the original tensor with compositional additional triples
to explicitly incorporate path structure into factorisation.
We design two observation schemes for the compositional model:

1. Multiplicative (PCOMP-MUL): 2. Additive (PCOMP-ADD):
xicj ∼ N (e>i Rc1Rc2 . . . Rcnej) xicj ∼ N (e>i

1
cn
(Rc1 + · · · +Rcn)ej)

where c is a compositional relation with composition of relations
{c1, c2, ..., cn}.

3 Knowledge Completion

Goal: predict the unobserved part of knowledge graph through the
reconstruction of tensor
Method: reconstruct tensor via posterior samples inferred by Gibbs
sampling

Dataset # rel # entities # triples sparsity
Kinship 26 104 10,790 0.038
UMLS 49 135 6,752 0.008
Nation 56 14 2,024 0.184

Table 1: Description of datasets.
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Figure 3: ROC-AUC
scores of compositional
and non-compositional
models. The multiplica-
tive compositional model
(PCOMP-MUL) outper-
forms the other baseline
models.
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Figure 4: Embedding learned entities of the UMLS dataset into a
two-dimensional space through the spectral clustering. The entities
of the same type are located closer to each other with the multiplica-
tive compositional model (PCOMP-MUL) than the non-compositional
model.

4 Incremental Knowledge Population

Goal: maximise the number of positive triples based on the interac-
tion with human experts given a limited amount of budget
Method: adopt Thompson sampling (TS) from K-armed bandits

•Particle Thompson sampling for population:

1. Sample unobserved triples xikj from posterior distribution
2. Query the maximum triple & Obtain label from human experts
3. Update posterior using sequential Monte Carlo
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Figure 5: The cumulative gain (up-
per) and ROC-AUC score (lower) of
the Thompson sampling with base-
line models. Thompson sampling
with PNORMAL model achieves the
highest cumulative gain. The compo-
sitional model performs worse than
the non-compositional models.

•TS has been used to maximise cumulative gains in bandits.

•Maximising cumulative gain entails good predictive models.
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